《数字图像处理-OpenCV/Python》第17章:图像的特征描述

《数字图像处理-OpenCV/Python》第17章:图像的特征描述


本书京东 优惠购书链接 https://item.jd.com/14098452.html
本书CSDN 独家连载专栏 https://blog.csdn.net/youcans/category_12418787.html

在这里插入图片描述


第17章:图像的特征描述


特征检测与匹配是计算机视觉的基本任务,包括检测、描述和匹配三个相互关联的步骤。广泛应用于目标检测、图像检索、视频跟踪和三维重建等诸多领域。
OpenCV提供了丰富的特征检测和匹配算法,不仅继承了cv::Feature2D 类,而且采用了统一的定义和封装。


17.1 角点检测之Harris算法

角是直线方向的快速变化,角点定义为两条边的交点,是简单高效的特征。角点检测(Corner Detection)是特征检测的基础,Harris算法是经典的角点检测算法。


Harris角点检测

Harris角点检测算法的原理是,通过检测窗口在图像上移动,计算移动前后窗口中像素的灰度变化。角点是两条边的交点,其特征是检测窗口沿任方向移动都会导致灰度的显著变化。

Harris算法计算梯度的协方差矩阵M,协方差矩阵形状为椭圆,长短半轴由特征值 ( λ 1 , λ 2 ) (λ_1, λ_2) (λ1,λ2)决定,方向由特征向量决定。定义如下的角点响应函数 R。

R = d e t ( M ) − k [ t r a c e ( M ) ] 2 d e t ( M ) = λ 1 ∗ λ 2 t r a c e ( M ) = λ 1 + λ 2 \begin{aligned}R =& det(M) - k [trace(M)]^2 \\&det(M) = \lambda _1 * \lambda _2 \\&trace(M) = \lambda _1 + \lambda _2\end{aligned} R=det(M)k[trace(M)]2det(M)=λ1λ2trace(M)=λ1+λ2

角点响应 R 只与矩阵 M 的特征值 λ 1 , λ 2 \lambda _1,\lambda _2 λ1λ2 有关,可以用来判断区域是拐角、边缘还是平坦:

  • λ 1 , λ 2 \lambda _1,\lambda _2 λ1λ2 较小时, ∣ R ∣ |R| R 较小,即各个方向上灰度基本不变,表明检测器处于平坦区域;
  • λ 1 > > λ 2 \lambda _1 >> \lambda _2 λ1>>λ2 λ 2 > > λ 1 \lambda _2 >> \lambda _1 λ2>>λ1 时, R < 0 R <0 R<0 ,即灰度在某个方向变化,但在其正交方向不变化,表明检测器处于边缘区域;
  • λ 1 , λ 2 \lambda _1,\lambda _2 λ1λ2 较大且数值相当时,灰度在某个方向及其正交方向都变化强烈,表明存在角点或孤立点。

Harris角点检测算法的重复性好、检测效率高,应用比较广泛。

Shi-Tomas角点检测

Shi-Tomas算法是对Harris角点检测算法的改进,区别在于将角点响应函数修改如下。

R = m i n ( λ 1 , λ 2 ) R = min(\lambda _1 , \lambda _2) R=min(λ1,λ2)
只有当梯度协方差矩阵M的特征值 λ 1 , λ 2 λ_1, λ_2 λ1,λ2 都大于阈值时,才判定为角点。


OpenCV的角点检测函数

在OpenCV中提供了函数cv.cornerEigenValsAndVecs计算图像或矩阵的特征值和特征向量,函数cv.cornerMinEigenVal计算梯度矩阵的最小特征值,函数cv.cornerHarris实现Harris角点检测。

函数原型

cv.cornerHarris(src, blockSize, ksize, k[, dst, borderType]) → dst
cv.cornerEigenValsAndVecs(src, blockSize, ksize[, dst, borderType]) → dst
cv.cornerMinEigenVal(src, blockSize[, dst, ksize, borderType]) → dst

参数说明

 src:输入图像,单通道,数据类型为CV_8U或浮点数类型。
 dst:输出图像,角点响应函数,大小与src相同,格式为CV_32FC1。
 blockSize:检测器的滑动窗口尺寸,为整数。
 ksize:Sobel梯度算子的孔径,即卷积核的大小,为整数。
 k:Harris角点响应函数的调节参数,通常取0.04~0.06。
 borderType:边界扩充的类型,不支持BORDER_WRAP。

注意问题
⑴ 函数cv.cornerHarris返回值是如下的Harris的角点响应图像R。
R = d s t ( x , y ) = d e t ( M ( x , y ) ) − k ∗ [ t r a c e ( M ( x , y ) ) ] 2 R=dst(x,y)=det(M(x,y))-k*[trace(M(x,y))]^2 R=dst(x,y)=det(M(x,y))k[trace(M(x,y))]2
从角点响应图像中筛选大于检测阈值、且为局部最大值的点,就是图像的角点。检测阈值通常可以设为最大响应值的0.01~0.1。
⑵ 函数cv.cornerMinEigenVal与cv.cornerEigenValsAndVecs类似,区别在于它计算和保存矩阵M的最小特征值,即 m i n ( λ 1 , λ 2 ) min(λ_1 ,λ_2) min(λ1,λ2)


在OpenCV中提供了函数cv.goodFeaturesToTrack实现Shi-Tomas角点检测。

先使用cornerHarris或cornerMinEigenVal计算角点响应函数,最小特征值小于阈值的角点被剔除;并进行非最大值抑制,只保留(3×3)邻域中的局部最大值;最后按照角点响应函数的大小排序,输出前N个结果。

函数原型

cv.goodFeaturesToTrack(image, maxCorners, qualityLevel, minDistance[, corners, mask, blockSize, useHarrisDetector, k=0.04]) → corners

参数说明

 src:输入图像,单通道,数据类型为CV_8U或浮点数类型。
 corners:二维点向量集合的坐标(x,y),形如(n,1,2)的Numpy数组,浮点数。
 maxCorners:角点数量的最大值N,整数。
 qualityLevel:角点阈值系数,浮点数,取值范围0.0~1.0。
 minDistance:角点之间的最小欧式距离。
 mask:掩模图像,指定检测角点的区域,可选项。
 blockSize:检测器的滑动窗口尺寸,可选项,默认值为3。
 k:Harris角点响应函数的调节参数,可选项,默认值0.04。
 useHarrisDetector:计算角点响应的方法,默认值false,使用cornerMinEigenVal计算,true表示使用cornerHarris计算。

注意问题

⑴ 输出参数corners是形如(n,1,2)的Numpy数组,表示检测到n个角点的坐标(x,y)。
⑵ 检测阈值是阈值系数qualityLevel与最大响应值的乘积,小于阈值的角点都被拒绝。例如,最大响应为1500,系数为0.1,则检测阈值为150。
⑶ 剔除间距小于maxDistance的角点,实现非最大值抑制方法,避免重复的邻近角点。


【例程1701】角点检测之Harris算法和Shi-Tomas算法

本例程示例Harris角点检测算法和Shi-Tomas角点检测算法的使用。
Harris角点检测函数的返回值是角点响应图像,需要进行阈值处理才能得到角点坐标。Shi-Tomas角点检测函数的返回值是角点坐标。


# 【1701】角点检测之Harris算法和Shi-Tomas算法
import cv2 as cv
import numpy as np
from matplotlib import pyplot as plt

if __name__ == '__main__':
    img = cv.imread("../images/Fig1201.png", flags=1)
    gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY)

    # Harris 角点检测算法
    dst = cv.cornerHarris(gray, 5, 3, k=0.04)  # 角点响应图像,坐标(y,x)
    # Harris[dst>0.1*dst.max()] = [0,0,255]  # 筛选角点,红色标记
    stack = np.column_stack(np.where(dst>0.2*dst.max()))  # 阈值筛选角点 (n,2)
    corners = stack[:, [1, 0]]  # 调整坐标次序:(y,x) -> (x,y)
    print("num of corners by Harris: ", corners.shape)
    imgHarris = img.copy()
    for point in corners: 
        cv.drawMarker(imgHarris, point, (0,0,255), cv.MARKER_CROSS, 10, 1)  # 在点(x,y)标记

    # Shi-Tomas 角点检测算法
    maxCorners, qualityLevel, minDistance = 100, 0.1, 5
    corners = cv.goodFeaturesToTrack(gray, maxCorners, qualityLevel, minDistance)  # 角点坐标 (x,y)
    corners = np.squeeze(corners).astype(np.int)  # 检测到的角点 (n,1,2)->(n,2)
    print("num of corners by Shi-Tomas: ", corners.shape[0])
    imgShiTomas = np.copy(img)
    for point in corners:  # 注意坐标次序
        cv.drawMarker(imgShiTomas, (point[0], point[1]), (0,0,255), cv.MARKER_CROSS, 10, 2)  # 在点(x,y)标记
  plt.figure(figsize=(9, 3.3))
    plt.subplot(131), plt.title("1. Original")
    plt.axis('off'), plt.imshow(cv.cvtColor(img, cv.COLOR_BGR2RGB))
    plt.subplot(132), plt.title("2. Harris corners")
    plt.axis('off'), plt.imshow(cv.cvtColor(imgHarris, cv.COLOR_BGR2RGB))
    plt.subplot(133), plt.title("3. Shi-tomas corners")
    plt.axis('off'), plt.imshow(cv.cvtColor(imgShiTomas, cv.COLOR_BGR2RGB))
    plt.tight_layout()
    plt.show()  

运行结果:
num of corners by Harris: 589
num of corners by Shi-Tomas: 66

在这里插入图片描述

图17-1 Harris角点检测和Shi-Tomas角点检测


程序说明:

⑴ 程序运行结果如图17-1所示。子图1是原始图像,子图2是Harris角点检测的结果,子图3是Shi-Tomas角点检测的结果。
⑵ 运行结果表明,Harris算法函数检测到的角点数量远大于Shi-Tomas算法函数的结果。这是由于角点周围像素的响应值都很高,都被识别为角点,因此Harris函数会检测到大量重复的角点。


版权声明:
youcans@xupt 原创作品,转载必须标注原文链接:(https://blog.csdn.net/youcans/article/details/140212758)
Copyright 2024 youcans, XUPT
Crated:2024-07-05

《数字图像处理-OpenCV/Python》 独家连载专栏 : https://blog.csdn.net/youcans/category_12418787.html

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/776215.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

opencv概念以及安装方法

#opencv相关概念介绍 Open Source Computer Vision Library 缩写 opencv 翻译&#xff1a;开源的计算机视觉库 &#xff0c;英特尔公司发起并开发&#xff0c;支持多种编程语言&#xff08;如C、Python、Java等&#xff09;&#xff0c;支持计算机视觉和机器学习等众多算法&a…

【C++】开源:nlohmann/json数据解析库配置使用

&#x1f60f;★,:.☆(&#xffe3;▽&#xffe3;)/$:.★ &#x1f60f; 这篇文章主要介绍nlohmann/json数据解析库配置使用。 无专精则不能成&#xff0c;无涉猎则不能通。——梁启超 欢迎来到我的博客&#xff0c;一起学习&#xff0c;共同进步。 喜欢的朋友可以关注一下&am…

conda环境变量+常用操作+配置镜像源

、1、conda环境变量配置 根据我的上篇文章&#xff0c;应该都已经安装了conda和pycharm&#xff0c;然后可能会出现conda的没有配置到系统的环境变量上&#xff0c;这里首先教大家如何配置系统的环境变量&#xff0c;在进行后续操作&#xff0c;如果环境变量已经配置完毕可以自…

【C语言】指针(1)--入门理解

目录 一、内存和地址 二、指针变量和地址 三、指针变量类型的意义 一、内存和地址 只要讲指针就离不开内存 因为指针就是访问内存的 计算上CPU&#xff08;中央处理器&#xff09;在处理数据的时候&#xff0c;需要的数据是在内存中读取的&#xff0c;处理后的数 据也会放…

一款强大且免费开源的多连接数据库管理工具

大家好&#xff0c;今天给大家分享一款免费开源的跨平台数据库管理工具DbGate。 DbGate是一款免费开源的跨平台数据库管理工具&#xff0c;支持多种数据库&#xff0c;包括MySQL、PostgreSQL、SQL Server、MongoDB、SQLite等。它可以在Windows、Linux、Mac操作系统上运行&#…

亚信安全:《2024云安全技术发展白皮书》

标签 云计算 安全威胁 云安全技术 网络攻击 数据保护 一句话总结 《云安全技术发展白皮书》全面分析了云计算安全威胁的演进&#xff0c;探讨了云安全技术的发展历程、当前应用和未来趋势&#xff0c;强调了构建全面云安全防护体系的重要性。 摘要 云安全威胁演进&#xff…

刷题之合并两个有序数组(leetcode)

因为换了手机号码&#xff0c;之前leetcode的账号登不上去了&#xff0c;正好太久不刷题&#xff0c;很多思路都没了&#xff0c;所以重新开始刷leetcode&#xff01; 这道题很简单&#xff0c;指针模拟一下&#xff0c;从后往前考虑&#xff0c;先看最大值。 class Solution…

昇思25天学习打卡营第13天|linchenfengxue

Diffusion扩散模型 关于扩散模型&#xff08;Diffusion Models&#xff09;有很多种理解&#xff0c;本文的介绍是基于denoising diffusion probabilistic model &#xff08;DDPM&#xff09;&#xff0c;DDPM已经在&#xff08;无&#xff09;条件图像/音频/视频生成领域取得…

Qt json和xml操作

学习目标&#xff1a; 认识json和xml读写操作 前置环境 运行环境:qt creator 4.12 学习内容 XML XML&#xff08;Extensible Markup Language&#xff09;是一种标记语言,是一种用于描述数据结构的语言。它非常适合用于存储和传输数据。 XML 的主要特点如下: 可扩展性:XM…

【MySQL系列】VARCHAR 类型详解及其使用策略

&#x1f49d;&#x1f49d;&#x1f49d;欢迎来到我的博客&#xff0c;很高兴能够在这里和您见面&#xff01;希望您在这里可以感受到一份轻松愉快的氛围&#xff0c;不仅可以获得有趣的内容和知识&#xff0c;也可以畅所欲言、分享您的想法和见解。 推荐:kwan 的首页,持续学…

中英双语介绍伦敦大学学院(University College London,UCL)

中文版 伦敦大学学院&#xff08;UCL&#xff09;简介 位置和周边环境 伦敦大学学院&#xff08;University College London&#xff0c;简称UCL&#xff09;位于英国伦敦市中心的布卢姆斯伯里&#xff08;Bloomsbury&#xff09;区。具体地址为&#xff1a; Gower Street, …

Python 游戏服务器架构优化

优化 Python 游戏服务器的架构涉及多个方面&#xff0c;包括性能、可伸缩性、并发处理和网络通信。下面是一些优化建议&#xff1a; 1、问题背景 在设计 Python 游戏服务器时&#xff0c;如何实现服务器的横向扩展&#xff0c;以利用多核处理器的资源&#xff0c;并确保服务器…

更新GCC版本问题处理(Could not resolve host: mirrorlist.centos.org;)更换SCL配置源/SCL后yum使用不了

SCL&#xff1a; 在 Linux 系统中&#xff0c;更新 GCC&#xff08;GNU Compiler Collection&#xff09;编译器需要使用 Software Collections (SCL) 库的原因主要有以下几点&#xff1a; https://wiki.centos.org/AdditionalResources/Repositories/SCLhttps://wiki.centos…

【算法】(C语言):快速排序(递归)、归并排序(递归)、希尔排序

快速排序&#xff08;递归&#xff09; 左指针指向第一个数据&#xff0c;右指针指向最后一个数据。取第一个数据作为中间值。右指针指向的数据 循环与中间值比对&#xff0c;若大于中间值&#xff0c;右指针往左移动一位&#xff0c;若小于中间值&#xff0c;右指针停住。右…

SpringSecurity 三更草堂学习笔记

0.简介 Spring Security是Spring家族中的一个安全管理框架。相比与另外一个安全框架Shiro&#xff0c;它提供了更丰富的功能&#xff0c;社区资源也比Shiro丰富。 一般来说中大型的项目都是使用SpringSecurity来做安全框架。小项目有Shiro的比较多&#xff0c;因为相比与Spring…

聚焦云技术,探讨 AGI 时代的云原生数据计算系统

6月22日&#xff0c;开源中国社区在上海举办了 OSC 源创会活动&#xff0c;本期活动以「云技术」为主题&#xff0c;邀请了来自华为 openEuler、字节跳动、AutoMQ 等厂商的技术大咖进行分享&#xff0c;拓数派作为云原生数据计算领域的引领者&#xff0c;受邀参与了本次活动&am…

Linux shell编程学习笔记62: top命令 linux下的任务管理器

0 前言 top命令是Unix 和 Linux下常用的性能分析工具&#xff0c;提供了一个动态的、交互式的实时视图&#xff0c;显示系统的整体性能信息&#xff0c;以及正在运行的进程的相关信息&#xff0c;包括各个进程的资源占用状况&#xff0c;类似于Windows的任务管理器。 1 top命令…

Ethread结构体介绍(未完待更新)

1.StartAddress 和Win32StartAddress介绍 总结: StartAddress 总是 ntdll!RtlUserThreadStart(在win7下的3环线程) Win32StartAddress 等于 imagebaseentrypoint(基址 程序入口点)

215. 数组中的第K个最大元素(中等)

215. 数组中的第K个最大元素 1. 题目描述2.详细题解3.代码实现3.1 Python3.2 Java 1. 题目描述 题目中转&#xff1a;215. 数组中的第K个最大元素 2.详细题解 快速排序算法在每一轮排序中&#xff0c;随机选择一个数字 x x x&#xff0c;根据与 x x x的大小关系将要排序的数…

(自适应手机端)保健品健康产品网站模板下载

(自适应手机端)保健品健康产品网站模板下载PbootCMS内核开发的网站模板&#xff0c;该模板适用于装修公司网站、装潢公司网站等企业&#xff0c;当然其他行业也可以做&#xff0c;只需要把文字图片换成其他行业的即可&#xff1b;自适应手机端&#xff0c;同一个后台&#xff0…